
Aggregate formation in ferrofluid monolayers: simulations and theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 204125

(http://iopscience.iop.org/0953-8984/20/20/204125)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 12:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/20
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 204125 (5pp) doi:10.1088/0953-8984/20/20/204125

Aggregate formation in ferrofluid
monolayers: simulations and theory
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Abstract
In order to investigate the peculiarities of the aggregation processes in ferrofluids in a quasi-2D
geometry, a combination of density functional theory (DFT) and molecular dynamics (MD)
simulations is presented. The microstructure formation in monodisperse ferrofluid monolayers
is studied thoroughly through a comparison of the theoretical and computational results.
Theoretical and simulation results show similar trends which renders the theoretical approach a
useful tool for getting insight into the microstructure formation in monolayers.

1. Introduction

Ferrofluid particles are known to self-assemble into a variety
of magnetic equilibrium structures which depend on system
geometry, magnetic interactions, particle polydispersity,
presence or absence of external fields, etc [1]. The phase
behaviour and microstructure of ferrofluid systems in
constrained geometries are not necessarily equivalent to those
of 3D systems. Recent quasi-2D (Q2D) experiments using
cryogenic transmission electron microscopy (cryo-TEM) [2, 3]
have provided us with real space images of chain-like and
ring-like clusters in ferrofluids based on iron and magnetite
nanoparticles. Previously, Wen et al [4] had already
reported the observation of rings, chains and defects on dry
monolayers of microspheres using a CCD camera technique.
In turn, several theoretical and simulation approaches have
been developed for understanding the nature of the phase
behaviour and microstructure formation in such restricted
geometries. The existence of the vapour–liquid transition in
Q2D Stockmayer fluids has been investigated by Gao et al
using the Gibbs ensemble Monte Carlo technique [5]. Lomba
et al [6] have proposed an Ornstein–Zernike integral equation
formalism able to describe the structure of Q2D ferrofluid
monolayers in good agreement with Monte Carlo simulations.
Weis and co-workers (see [7, 8], and references therein)
have performed Monte Carlo simulations of monolayers and
systems of finite thickness involving dipolar interactions. They
have shown that Q2D dipolar systems, alone or in combination
with other interactions, present a rich variety of structures,

phases and phase transitions. A comparison of the simulation
results with equilibrium polymer theory has shown that the
structure of Q2D dipolar fluids in the low density regime is
closer to the one observed in 2D equilibrium polymers. The
arrangements of Q2D nanoparticles in constrained surfaces
has been studied by Ghazali and Lévy [9]. The structure
and dynamics in a monolayer of dipolar soft spheres has also
been investigated by Duncan and Camp [10] using molecular
dynamics simulations. They have shown that it is possible
to observe fingerprints of the formation of chains though the
structure factor in the form of a power-law scaling at low
wavevectors. More recently, Tavares et al [11] have performed
Monte Carlo simulations of Q2D dipolar hard spheres (DHS).
The structure of the fluid at low and intermediate densities has
been found to be well described by an ideal mixture of self-
assembling clusters. In addition, estimates for the partition
function of those clusters have been derived, and results from
their work suggest that 2D dipolar fluid undergoes a phase
transition from a dilute phase of disconnected clusters to a
condensed network phase. In turn, the kinetics of aggregation
in monolayers has been studied by Duncan and Camp [12]
using stochastic dynamics simulations. Their results suggest
that the conditions for defect-driven condensation [13] could
be met by kinetic trapping, giving rise to a metastable phase
transition between isotropic fluid phases.

Despite the progress obtained in previous studies, the un-
derstanding of the phase behaviour and microstructure forma-
tion of ferrofluids in constrained geometries is only partial. In
the present study we propose a new density functional theory
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for monodisperse Q2D ferrofluids in monolayers, which com-
bined with molecular dynamics simulations provides a deeper
understanding of the microstructure formation mechanisms in
constrained geometries.

The outline of this paper is as follows. In section 2 we
present a density functional theory for monolayers (DFTM).
The simulation model is presented in section 3, and a
comparison and discussion of the results from the simulations
and DFTM are given in section 4. In section 5, conclusions are
presented.

2. Density functional theory for monolayers

Our model system is composed of identical spherical particles.
The magnetic cores (with diameter σ ) are covered with a
nonmagnetic layer of thickness l. Each particle possesses a
permanent magnetic moment μ which can freely rotate in the
three-dimensional space, and the centres of the particles are
trapped in a plane to mimic quasi-two-dimensional systems
which are closer to the description of monolayers than purely
two-dimensional systems. We assume two types of inter-
particle interactions in our model: magnetic dipole–dipole
interaction (1) and steric soft-sphere repulsion (2),

U dip
i j = μ0

4π

(
μi · μ j

|ri j |3 − 3[μi · ri j ][μ j · ri j ]
|ri j |5

)
, (1)

where ri j = ri − r j is the displacement vector of the
two particles, and μ0 = 4π × 10−7 H m−1 is the vacuum
permeability. The short-range interactions between pairs
of particles are represented by a Weeks–Chandler–Andersen
potential [14],

U sr
i j = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

+ ε (2)

a purely repulsive Lennard-Jones potential with a cut-off radius
Rc = 21/6σ .

Our theoretical approach allows for the existence of
ferroparticle flexible chains and quasi-ideal rings. The latter
means that the displacement vectors of particles in a ring
organize into a regular polygon, the side of which can fluctuate;
in other words, the ring can ‘breathe’. In the present formalism,
only nearest neighbour interactions are taken into account for
particles inside an aggregate. For the cluster definition an
entropy criterion is used [15]. A further discussion about the
different possible criteria for cluster definition and the entropy
criterion is provided in section 4.

We use here a density functional approach to find the
equilibrium area fractions of chains g(n) and rings f (n).
The comparison of the theoretical and simulation results (see
section 4) shows that excluded area interactions play a crucial
role in quasi-2D; the constraints imposed by the monolayer
geometry change the entropy of clusters. In the present
formalism the excluded area interactions are taken into account
in the simplest form, as a reduction of the entropy: the factor
(1 − 8φ/π) arises from the excluded area interactions. The
free energy density functional (which results from Frenkel’s

heterophase fluctuation theory [16], and can be obtained as a
generalization of the free energy functional in [15]) is

F(g, f ) = kBT
∞∑

n=1

g(n)

⎛
⎝ln

g(n)s[
1 − 8φ

π

]
e

− ln Q(n)

⎞
⎠

+ kBT
∞∑

n=5

f (n)

⎛
⎝ln

f (n)s[
1 − 8φ

π

]
e

− ln W (n)

⎞
⎠ , (3)

where kBT is the thermal energy, s represents the cross-
sectional area of the particle; Q(n) and W (n) stand for the
chain and the ring partition functions respectively. In the
second term of (3) the summation starts at n = 5, because
proper rings are assumed to contain five or more particles.
In order to analytically calculate the chain and ring partition
functions, special coordinate systems have been used which
allow for the factorization of Q(n) and W (n): Q(n) = qn−1,
W (n) = w(n)n/n; where q and w(n) denote the pair effective
energies in a chain and ring respectively. Unlike for the chains,
where this pair energy does not depend on the chain length,
the effective pair energy in a ring is n-dependent. The factor
n in the denominator in a ring partition function tells that all
n particles in a ring can be chosen to be the first; thus there
are n different configurations for the same ‘macrostate’. For
the chain, according to the definition adopted here only one
particle can be chosen as the first, because the orientation of its
magnetic moment is also taken into account. Finally, the free
energy (3) has to be minimized with the help of the Lagrange
method under the mass balance condition:

∞∑
n=1

ng(n) +
∞∑

n=5

n f (n) = φ

s
. (4)

This condition means that the total number of particles in the
system is limited by the ferroparticle area fraction φ.

Thus equilibrium chain and ring area fractions have the
following form:

g(n) = 1

s

[
1 − 8φ

π

]
qn−1 exp(pn)

f (n) = 1

sn

[
1 − 8φ

π

]
w(n)n exp(pn),

(5)

where p has the meaning of a Lagrange multiplier.

3. Simulation model

We model the ferrofluids in our equilibrium molecular dynamic
simulations as systems consisting of N spherical particles of
diameter σ , distributed in a square simulation area of side
length L. Like in the theory, we assume particles to be
monodisperse, and exhibit a permanent point dipole moment μ

at its centre, which can freely rotate in 3D, and interact through
equation (1). For the particle movements, periodic boundary
conditions are applied along X–Y directions. The long-range
dipole–dipole interactions are calculated in a first step by using
a recently developed dipolar P3M algorithm (dP3M) on the
basis of the Coulomb P3M [17, 18]; in a second step, a dipolar
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Figure 1. A typical snapshot for a system with area fraction
φ = 0.25 and dipolar coupling parameter λ = 3.3. The fraction of
particles in branched structures is still low enough for the theoretical
ansatz to be valid since there only ring-like and chain-like aggregates
are considered. In agreement with DFT, in the range of λ s under
study, stable ring-like structures that represent a small fraction of the
whole set of clusters are observed.

layer correction (DLC) [19] is applied which discounts the
effect of the excess of infinite replicas added in the first step
along the Z direction. The use of the dP3M plus DLC method
allows a much faster calculation of the dipolar long-range
correlations than the traditional dipolar Ewald summation [20].
The correctness and exactitude of the algorithm used in this
work have been tested against both the dipolar Ewald sum and
the dipolar direct sum. The level of accuracy of the algorithm
for computing dipolar forces and torques is set to δ ∼ 10−4 in
this study.

In our simulations, the short-range interactions between
pairs of particles are represented by equation (2); translational
and rotational Langevin equations of motion of particle i are
given by [21]

Mi
dvi

dt
= Fi−�Tvi+ξT

i , Ii ·dωi

dt
= τ i−�Rωi+ξR

i , (6)

where Fi and τ i are the resulting force and torque acting on
the particle i , respectively. Mi and Ii are the mass and the
inertia tensor of the particle. �T and �R are the translational
and rotational friction constants, respectively. ξT

i and ξR
i are

the Gaussian random force and torque with mean zero, and
satisfying usual fluctuation-dissipation relations. The variables
can be given in dimensionless form as length r∗ = r/σ , dipole
moment (μ∗)2 = μ2/(ε/σ 3), time t∗ = t (ε/(Mσ 2))(1/2), and
temperature T ∗ = kBT/ε. The simulations are performed
at constant temperature T ∗ = 1. In doing equilibrium
simulations, the values of the mass, the inertia tensor, as well
as friction constants �T, and �R are somewhat arbitrary. The
particle mass is chosen to be M = 1, and the inertia tensor I =
1, the identity matrix, to ensure isotropic rotations. We adopted
�T = 1, and �R = 3/4 which are observed in our systems
to give a fast relaxation towards the equilibrium. A reduced

Figure 2. Fraction of particles in the system that are embedded into
branched clusters (i.e. neither chains nor rings). The plot shows that
the omission of branched structures is admissible in the range of
surface fractions and dipolar couplings under study.

time step 	t∗ = 15 × 10−4 is used. The runs are started
from initial configurations with random particle positions over
the simulation area, and 3D random orientation for the dipole
moments of the particles. Each system is first equilibrated for
a period of 2 × 106 time steps to ensure results to be totally
independent of the starting conditions. Analysis of the auto-
correlation function of the energy indicates correlation times
smaller than 104	t∗ even in the worst cases. In order to ensure
a proper and almost uncorrelated sampling, measurements are
taken at intervals of 2 × 104	t∗ for another period of 8 × 106

time steps. The number of particles per system is N = 1000
in regular simulations, although several extra runs (up to N =
10 000) have been performed in order to ensure independence
of results from finite-size effects. The simulation package
ESPResSo [22] has been used to do the simulations.

4. Results and discussion

The behaviour of ferrofluid monolayers can be characterized
through the use of two main parameters: the area fraction
φ = Nπ(σ/2)2/L2 and the dipolar coupling parameter
λ = 0.5Udd/kBT , where Udd is the interaction energy of
two particles when they centres are at a distance σ , and
their dipoles are perfectly aligned. In the present work we
study the behaviour of systems λ = 2.0, 2.6, 3.3 for area
fractions ranging from φ = 0.01 to 0.25. In our particle
model we assume the magnetic core to be surrounded by a
nonmagnetic layer of surfactants with thickness l = 2 nm;
the total particle diameters associated with the previous dipolar
coupling parameters λ are σ = 18, 19, 20 nm. The values
of λ, σ and φ under study have been chosen for a twofold
reason: they roughly correspond to the values found in typical
experimental systems; and they provide the most adequate
scenario for testing the theory because the types of aggregates
that we basically observe in these ranges of parameters are
chain-like and ring-like clusters; see figures 1 and 2. Figure 2
shows that in the range of area fractions and dipolar coupling
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Figure 3. Shown is the average cluster size 〈s〉 as a function of
surface fraction φ for various dipolar couplings λ. The theoretical
predictions are shown by the various lines, and are in reasonable
agreement with the data points that were obtained using molecular
dynamic simulations. To stress the importance of the excluded
volume interaction we show in the inset a similar comparison in
which the excluded area interactions are not taken into account in the
DFT theory.

Figure 4. A comparison of the theoretical predictions, and the
simulation results for the fraction of monomers X0 as a function of
the area fraction φ.

parameter considered, the fraction of particles in branched
clusters, i.e. those which cannot be considered either chains
or rings, is to a good approximation, negligible. Nonetheless,
the assumption that systems are only composed of chain-like
and ring-like clusters is at present one of the main constraints
of the theory.

In order to study the formation of cluster aggregates we
have adopted the so-called entropy criterion [15], in which
two particles i and j are considered to be bonded when the
following three conditions are satisfied: ri j � rc, μi · μ j � 0
and (μi · ri j )(μ j · ri j ) � 0. In our cluster analysis we have set
the cut-off radius rc = 1.35σ . The entropy criterion provides
a better resolution of the neighbouring clusters than energy or

Figure 5. Shown is a comparison of the fraction of particles forming
dimers and chain ends, X1, versus the surface fraction φ. The legend
is the same as in figure 4 for X0.

distance criteria. The entropy criterion is advantageous with
respect to the distance criterion because it takes into account
that not only must two particles be close to be considered as
bonded, but also their dipolar moments must be correlated.
Despite dipole correlations being implicitly taken into account
in energy criteria, we have observed that the entropy criterion
is more tolerant to the thermal fluctuations that artificially split
isolated chains and rings into small pieces when an energy
criterion is used, and allows for a direct comparison with DFT
calculations.

Figure 3 shows a comparison of the theoretical and
simulation results for the evolution of the size of the aggregates
with the area fraction. Despite a lack of perfect quantitative
agreement, we observe that theory and simulation show
similar predictions. We can observe that the inclusion of
the excluded area term in the theory is crucial for getting
a correct description of the systems at large area fractions.
The inset in figure 3 shows a comparison of the results
obtained when excluded area interactions are not taken into
account in the theory. The mismatch between simulation and
theoretical results is larger in that case. In fact, the observed
trends between theory and simulation are quite different when
excluded area effects are disregarded. As a further test of the
usefulness of the theory, figures 4 and 5 show a comparison
of the evolution with the area fraction of the fractions of
monomers X0, and particles with a single neighbour X1,
respectively. It is important to notice that the value of X1

accounts not only for the number of dimers, but also for the
number of chain ends present in the system, and therefore gives
supplementary information about the system. In both figures 4
and 5, we observe again that theoretical predictions show
trends similar to the values obtained in simulations. Despite
the constraints implicit in the theory, we observe that once
the excluded area term is taken into account, the theoretical
formalism that we present is able to capture the main essence
of the problem, and therefore it constitutes an excellent tool
for doing a further analysis of the microstructure formation in
constrained geometries.
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5. Conclusions

In the present work we have described a new density
functional theory for quasi-two-dimensional monolayers of
dipolar particles. Ring and chain aggregates can be treated
in this way. A thorough comparison of the predictions of the
theory with the values obtained through equilibrium molecular
dynamic simulations has shown that in the range of the space
of parameters (λ, φ) in which the theory could be expected to
be valid, the theory is able to closely predict the simulation
results. For higher densities and larger couplings, however,
we see an increase in branched structures. These might play a
crucial role for discussing any possible phase transitions which
could occur in this system, and whose investigation will be left
for a future study. An improvement of the present theory by
dropping several of the limiting constraints will be the object
of forthcoming work.
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